Logo Search packages:      
Sourcecode: aubio version File versions  Download package

onset.py

from aubio.bench.node import *
from os.path import dirname,basename

def mmean(l):
      return sum(l)/max(float(len(l)),1)

def stdev(l):
      smean = 0
      if not len(l): return smean
      lmean = mmean(l)
      for i in l:
            smean += (i-lmean)**2
      smean *= 1. / len(l)
      return smean**.5

00017 class benchonset(bench):

      """ list of values to store per file """
      valuenames = ['orig','missed','Tm','expc','bad','Td']
      """ list of lists to store per file """
      valuelists = ['l','labs']
      """ list of values to print per dir """
      printnames = [ 'mode', 'thres', 'dist', 'prec', 'recl',
            'GD', 'FP', 
            'Torig', 'Ttrue', 'Tfp',  'Tfn',  'TTm',   'TTd',
            'aTtrue', 'aTfp', 'aTfn', 'aTm',  'aTd',  
            'mean', 'smean',  'amean', 'samean']

      """ per dir """
      formats = {'mode': "%12s" , 'thres': "%5.4s", 
            'dist':  "%5.4s", 'prec': "%5.4s", 'recl':  "%5.4s",
            'Torig': "%5.4s", 'Ttrue': "%5.4s", 'Tfp':   "%5.4s", 'Tfn':   "%5.4s", 
            'TTm':    "%5.4s", 'TTd':    "%5.4s",
            'aTtrue':"%5.4s", 'aTfp':  "%5.4s", 'aTfn':  "%5.4s", 
            'aTm':   "%5.4s", 'aTd':   "%5.4s",
            'mean':  "%5.6s", 'smean': "%5.6s", 
            'amean':  "%5.6s", 'samean': "%5.6s", 
            "GD":     "%5.4s", "FP":     "%5.4s",
            "GDm":     "%5.4s", "FPd":     "%5.4s",
            "bufsize": "%5.4s", "hopsize": "%5.4s",
            "time":   "%5.4s"}

00044       def dir_eval(self):
            """ evaluate statistical data over the directory """
            v = self.v

            v['mode']      = self.params.onsetmode
            v['thres']     = self.params.threshold 
            v['bufsize']   = self.params.bufsize
            v['hopsize']   = self.params.hopsize
            v['silence']   = self.params.silence
            v['mintol']   = self.params.mintol

            v['Torig']     = sum(v['orig'])
            v['TTm']       = sum(v['Tm'])
            v['TTd']       = sum(v['Td'])
            v['Texpc']     = sum(v['expc'])
            v['Tbad']      = sum(v['bad'])
            v['Tmissed']   = sum(v['missed'])
            v['aTm']       = mmean(v['Tm'])
            v['aTd']       = mmean(v['Td'])

            v['mean']      = mmean(v['l'])
            v['smean']     = stdev(v['l'])

            v['amean']     = mmean(v['labs'])
            v['samean']    = stdev(v['labs'])
            
            # old type calculations
            # good detection rate 
            v['GD']  = 100.*(v['Torig']-v['Tmissed']-v['TTm'])/v['Torig']
            # false positive rate
            v['FP']  = 100.*(v['Tbad']+v['TTd'])/v['Torig']
            # good detection counting merged detections as good
            v['GDm'] = 100.*(v['Torig']-v['Tmissed'])/v['Torig'] 
            # false positives counting doubled as good
            v['FPd'] = 100.*v['Tbad']/v['Torig']                
            
            # mirex type annotations
            totaltrue = v['Texpc']-v['Tbad']-v['TTd']
            totalfp = v['Tbad']+v['TTd']
            totalfn = v['Tmissed']+v['TTm']
            self.v['Ttrue']     = totaltrue
            self.v['Tfp']       = totalfp
            self.v['Tfn']       = totalfn
            # average over the number of annotation files
            N = float(len(self.reslist))
            self.v['aTtrue']    = totaltrue/N
            self.v['aTfp']      = totalfp/N
            self.v['aTfn']      = totalfn/N

            # F-measure
            self.P = 100.*float(totaltrue)/max(totaltrue + totalfp,1)
            self.R = 100.*float(totaltrue)/max(totaltrue + totalfn,1)
            #if self.R < 0: self.R = 0
            self.F = 2.* self.P*self.R / max(float(self.P+self.R),1)
            self.v['dist']      = self.F
            self.v['prec']      = self.P
            self.v['recl']      = self.R


      """
      Plot functions 
      """

      def plotroc(self,d,plottitle=""):
            import Gnuplot, Gnuplot.funcutils
            gd = []
            fp = []
            for i in self.vlist:
                  gd.append(i['GD']) 
                  fp.append(i['FP']) 
            d.append(Gnuplot.Data(fp, gd, with='linespoints', 
                  title="%s %s" % (plottitle,i['mode']) ))

      def plotplotroc(self,d,outplot=0,extension='ps'):
            import Gnuplot, Gnuplot.funcutils
            from sys import exit
            g = Gnuplot.Gnuplot(debug=0, persist=1)
            if outplot:
                  if   extension == 'ps':  ext, extension = '.ps' , 'postscript'
                  elif extension == 'png': ext, extension = '.png', 'png'
                  elif extension == 'svg': ext, extension = '.svg', 'svg'
                  else: exit("ERR: unknown plot extension")
                  g('set terminal %s' % extension)
                  g('set output \'roc-%s%s\'' % (outplot,ext))
            xmax = 30 #max(fp)
            ymin = 50 
            g('set xrange [0:%f]' % xmax)
            g('set yrange [%f:100]' % ymin)
            # grid set
            g('set grid')
            g('set xtics 0,5,%f' % xmax)
            g('set ytics %f,5,100' % ymin)
            g('set key 27,65')
            #g('set format \"%g\"')
            g.title(basename(self.datadir))
            g.xlabel('false positives (%)')
            g.ylabel('correct detections (%)')
            g.plot(*d)

      def plotpr(self,d,plottitle=""):
            import Gnuplot, Gnuplot.funcutils
            x = []
            y = []
            for i in self.vlist:
                  x.append(i['prec']) 
                  y.append(i['recl']) 
            d.append(Gnuplot.Data(x, y, with='linespoints', 
                  title="%s %s" % (plottitle,i['mode']) ))

      def plotplotpr(self,d,outplot=0,extension='ps'):
            import Gnuplot, Gnuplot.funcutils
            from sys import exit
            g = Gnuplot.Gnuplot(debug=0, persist=1)
            if outplot:
                  if   extension == 'ps':  ext, extension = '.ps' , 'postscript'
                  elif extension == 'png': ext, extension = '.png', 'png'
                  elif extension == 'svg': ext, extension = '.svg', 'svg'
                  else: exit("ERR: unknown plot extension")
                  g('set terminal %s' % extension)
                  g('set output \'pr-%s%s\'' % (outplot,ext))
            g.title(basename(self.datadir))
            g.xlabel('Recall (%)')
            g.ylabel('Precision (%)')
            g.plot(*d)

      def plotfmeas(self,d,plottitle=""):
            import Gnuplot, Gnuplot.funcutils
            x,y = [],[]
            for i in self.vlist:
                  x.append(i['thres']) 
                  y.append(i['dist']) 
            d.append(Gnuplot.Data(x, y, with='linespoints', 
                  title="%s %s" % (plottitle,i['mode']) ))

      def plotplotfmeas(self,d,outplot="",extension='ps', title="F-measure"):
            import Gnuplot, Gnuplot.funcutils
            from sys import exit
            g = Gnuplot.Gnuplot(debug=0, persist=1)
            if outplot:
                  if   extension == 'ps':  terminal = 'postscript'
                  elif extension == 'png': terminal = 'png'
                  elif extension == 'svg': terminal = 'svg'
                  else: exit("ERR: unknown plot extension")
                  g('set terminal %s' % terminal)
                  g('set output \'fmeas-%s.%s\'' % (outplot,extension))
            g.xlabel('threshold \\delta')
            g.ylabel('F-measure (%)')
            g('set xrange [0:1.2]')
            g('set yrange [0:100]')
            g.title(basename(self.datadir))
            # grid set
            #g('set grid')
            #g('set xtics 0,5,%f' % xmax)
            #g('set ytics %f,5,100' % ymin)
            #g('set key 27,65')
            #g('set format \"%g\"')
            g.plot(*d)

      def plotfmeasvar(self,d,var,plottitle=""):
            import Gnuplot, Gnuplot.funcutils
            x,y = [],[]
            for i in self.vlist:
                  x.append(i[var]) 
                  y.append(i['dist']) 
            d.append(Gnuplot.Data(x, y, with='linespoints', 
                  title="%s %s" % (plottitle,i['mode']) ))
      
      def plotplotfmeasvar(self,d,var,outplot="",extension='ps', title="F-measure"):
            import Gnuplot, Gnuplot.funcutils
            from sys import exit
            g = Gnuplot.Gnuplot(debug=0, persist=1)
            if outplot:
                  if   extension == 'ps':  terminal = 'postscript'
                  elif extension == 'png': terminal = 'png'
                  elif extension == 'svg': terminal = 'svg'
                  else: exit("ERR: unknown plot extension")
                  g('set terminal %s' % terminal)
                  g('set output \'fmeas-%s.%s\'' % (outplot,extension))
            g.xlabel(var)
            g.ylabel('F-measure (%)')
            #g('set xrange [0:1.2]')
            g('set yrange [0:100]')
            g.title(basename(self.datadir))
            g.plot(*d)

      def plotdiffs(self,d,plottitle=""):
            import Gnuplot, Gnuplot.funcutils
            v = self.v
            l = v['l']
            mean   = v['mean']
            smean  = v['smean']
            amean  = v['amean']
            samean = v['samean']
            val = []
            per = [0] * 100
            for i in range(0,100):
                  val.append(i*.001-.05)
                  for j in l: 
                        if abs(j-val[i]) <= 0.001:
                              per[i] += 1
            total = v['Torig']
            for i in range(len(per)): per[i] /= total/100.

            d.append(Gnuplot.Data(val, per, with='fsteps', 
                  title="%s %s" % (plottitle,v['mode']) ))
            #d.append('mean=%f,sigma=%f,eps(x) title \"\"'% (mean,smean))
            #d.append('mean=%f,sigma=%f,eps(x) title \"\"'% (amean,samean))


      def plotplotdiffs(self,d,outplot=0,extension='ps'):
            import Gnuplot, Gnuplot.funcutils
            from sys import exit
            g = Gnuplot.Gnuplot(debug=0, persist=1)
            if outplot:
                  if   extension == 'ps':  ext, extension = '.ps' , 'postscript'
                  elif extension == 'png': ext, extension = '.png', 'png'
                  elif extension == 'svg': ext, extension = '.svg', 'svg'
                  else: exit("ERR: unknown plot extension")
                  g('set terminal %s' % extension)
                  g('set output \'diffhist-%s%s\'' % (outplot,ext))
            g('eps(x) = 1./(sigma*(2.*3.14159)**.5) * exp ( - ( x - mean ) ** 2. / ( 2. * sigma ** 2. ))')
            g.title(basename(self.datadir))
            g.xlabel('delay to hand-labelled onset (s)')
            g.ylabel('% number of correct detections / ms ')
            g('set xrange [-0.05:0.05]')
            g('set yrange [0:20]')
            g.plot(*d)


      def plothistcat(self,d,plottitle=""):
            import Gnuplot, Gnuplot.funcutils
            total = v['Torig']
            for i in range(len(per)): per[i] /= total/100.

            d.append(Gnuplot.Data(val, per, with='fsteps', 
                  title="%s %s" % (plottitle,v['mode']) ))
            #d.append('mean=%f,sigma=%f,eps(x) title \"\"'% (mean,smean))
            #d.append('mean=%f,sigma=%f,eps(x) title \"\"'% (amean,samean))


      def plotplothistcat(self,d,outplot=0,extension='ps'):
            import Gnuplot, Gnuplot.funcutils
            from sys import exit
            g = Gnuplot.Gnuplot(debug=0, persist=1)
            if outplot:
                  if   extension == 'ps':  ext, extension = '.ps' , 'postscript'
                  elif extension == 'png': ext, extension = '.png', 'png'
                  elif extension == 'svg': ext, extension = '.svg', 'svg'
                  else: exit("ERR: unknown plot extension")
                  g('set terminal %s' % extension)
                  g('set output \'diffhist-%s%s\'' % (outplot,ext))
            g('eps(x) = 1./(sigma*(2.*3.14159)**.5) * exp ( - ( x - mean ) ** 2. / ( 2. * sigma ** 2. ))')
            g.title(basename(self.datadir))
            g.xlabel('delay to hand-labelled onset (s)')
            g.ylabel('% number of correct detections / ms ')
            g('set xrange [-0.05:0.05]')
            g('set yrange [0:20]')
            g.plot(*d)



Generated by  Doxygen 1.6.0   Back to index